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Abstract. The Nambu spinor Green’s function approach is applied to studying the proximity effect in
ferromagnet/d-wave superconductor (FM/d-wave SC) junctions. It is found that the magnitude of the
proximity effect depends to a great extent on the orientation of the SC crystal with respect to the interface
normal. On the FM side, near the interface there are two different types of density of states (DOS) with
superconducting features. On the SC side, the DOS near the interface is spin dependent, indicating a local
coexistence of weak ferromagnetism and d-wave superconductivity.

PACS. 74.45.+c Proximity effects; Andreev effect; SN and SNS junctions – 74.50.+r Tunneling
phenomena; point contacts, weak links, Josephson effects – 74.20.Rp Pairing symmetries
(other than s-wave)

1 Introduction

Proximity effects in ferromagnet/superconductor
(FM/SC) structures have recently attracted much
attention in experimental and theoretical investiga-
tions [1–23]. Cooper pairs injected from SC to FM are
not broken immediately and can survive for a time
corresponding to a traveled length of the order of ξF ,
giving rise to a superconducting order parameter in
the FM near the interface, where ξF = �vF /2h0 is the
coherent length in FM with vF the Fermi velocity and
2h0 the exchange energy, equal to the difference in energy
between spin-up and spin-down bands. On the other
hand, the injection of spin-polarized electrons from the
FM into the SC leads to a stronger pair-breaking effect
than in a normal-metal/SC (NM/SC) structure. In SC
near the FM/SC interface there may appear gapless
superconductivity [19] in addition to the decrease of
superconducting order parameter. The Andreev reflec-
tion (AR) process [24] plays an important role in the
proximity effect. In this process an electron in the FM is
reflected from the FM/SC interface as a hole along an
approximately time-reversed path, where the time-reverse
symmetry has been broken by the presence of the FM.
The inducement of superconductivity in the FM and its
suppression in the SC may be attributed to the coherent
coupling of electrons and holes in FM and a pair-breaking
effect in SC, respectively, both produced by the AR
process.
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In a recent work on the proximity effect in FM/SC
junctions, Kontos et al. [10] measured tunnelling spectra
of Al/Al2O3/PdNi/Nb tunnel junctions where PdNi is a
ferromagnetic alloy and Nb is an s-wave SC. The tun-
neling spectra they measured corresponds to the density
of states (DOS) in PdNi at the Al2O3/PdNi interface,
exhibiting an Nb-induced superconducting feature and a
change from “0” to “π” state with increasing thickness of
the PdNi layer. Zareyan et al. [11] and Sun et al. [19] stud-
ied theoretically the proximity effect in the FM/s-wave SC
junction. The DOS in FM was reproduced with the super-
conducting feature of the “0” and “π” states [11,19], and
the gapless superconductivity was obtained in the s-wave
SC near the FM/SC interface [19]. It is expected that sim-
ilar characteristics of the proximity effect just described
also exist in the FM/d-wave SC junctions. In addition,
there must be effects particular to them, unlike in the
FM/s-wave SC junctions.

Since the cuprate superconductors with high critical
temperature were identified as having a dx2−y2-wave sym-
metry of pair potential, the study of FM/d-wave junc-
tions has become an important topic. The pair poten-
tial for dx2−y2-wave symmetry has cos 2θ dependence,
resulting in a number of interesting phenomena. For ex-
ample, for {110}-orientation, the amplitude of the pair
potential disappears for θ = π/4. In this case, the d-
wave symmetry could lead to a sizable areal density of
midgap states [25], which is the origin of the zero-bias
conductance peak observed in most high-Tc superconduc-
tor junctions. This feature can be used as a clear signa-
ture to distinguish between d-wave and anisotropic s-wave
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superconductors [25]. The conductance spectra for charge
and spin currents have been calculated theoretically in
the FM/d-wave SC junctions [5,6]. The zero-bias conduc-
tance peaks were obtained for the [110] interface, which
are close to the local DOS in the d-wave SC at the inter-
face. Very recently, Stefanakis and Melin [26] have stud-
ied the proximity effect in FM/SC hybrid structures us-
ing the Bogoliubov-de Gennes (BdG) formalism within a
two-dimension (2D) extended Hubbard model and made
a comparison between s-wave and d-wave pairing cases.
In the d-wave case, the proximity effect depends on the
orientation of the SC crystal with respect to the interface
normal. For the c-axis parallel to the interface normal,
the FM/d-wave SC junction is a 3D system; while for the
c-axis along a direction within the interface, it may be
regarded as a 2D system. In the latter case, the angle
between the a-axis and the interface normal also plays an
important role in the proximity effect. Such an orientation
dependence of the proximity effect is one of motivations
of this study.

Another interesting topic is the possible coexistence
of ferromagnetism and spin-singlet superconductivity [27].
Since both of them have different requirements for spin
orientation of itinerant electrons, it is very difficult for
them to coexist in a bulk sample. It was shown [28] that
their coexistence condition in the d-wave case is given by
h0/∆0 < 0.56 for zero center-of-momentum Cooper pairs
and 0.56 < h0/∆0 < 1.06 for the FFLO states [29,30]
for the Cooper pair having a finite center-of-mass mo-
mentum Q = 2h0/�vF , where ∆0 is the maximum en-
ergy gap at T = 0. However, h0 in a bulk FM is typi-
cally at least 2 orders of magnitude larger than ∆0 of a
bulk SC. Until recently, whether or not the itinerant fer-
romagnetism can coexist with spin-singlet superconduc-
tivity is still under dispute [31–33]. On the experimental
side, the coexistence of ferromagnetism and superconduc-
tivity was reported in Cu-rich lanthanum Cu-oxides [34]
and in c-axis oriented YBa2Cu3O7/La0.67Ba0.33MnO3 su-
perlattices [35]. As a result, it is highly desirable to study
probable coexistence between ferromagnetism and super-
conductivity near the FM/SC interface, which is another
motivation for this work.

In this paper, we extend the theoretical approach of
Blonder-Tinkham-Klapwijk (BTK) [36], which was pre-
viously used to calculate differential conductance of an
NM/s-wave SC junction, to study the proximity effect in
FM/d-wave SC junctions, from which wave functions of
quasiparticles on both FM and SC sides can be obtained.
We then present a formulation of the Green function in 2D
and 3D junction structures by extending McMillan’s for-
mula [37] originally developed for a 1D s-wave supercon-
ductor. The superconducting order parameter is described
by the imaginary part of the off-diagonal component of the
Green’s function, and the density of states (DOS) is pro-
portional to the imaginary part of its diagonal component.
It is found that the spatial changes of the superconducting
order parameter and DOS due to the proximity effect de-
pend to a great extent on the orientation of the d-wave SC
crystal with respect to the interface normal. On the FM

side, there are two types of DOS with d-wave supercon-
ducting features; while on the SC side, there exists a local
coexistence between weak ferromagnetism and d-wave su-
perconductivity near the interface.

2 Model and theory

Consider an FM/d-wave SC junction structure of semi-
infinite FM and SC separated by a very thin insulating
layer located at x = 0. If the c-axis of the d-wave SC
is along a direction within plane x = 0, which is taken
to be the z-axis, such an FM/d-wave SC junction may
be regarded as a two-dimensional system. The FM is de-
scribed by an effective single-particle Hamiltonian with
exchange energy h0, the d-wave SC is described by a BCS-
like Hamiltonian, and the insulating layer described by a
δ-type barrier potential V (x) = Uδ(x) where U depends
on the product of barrier height and width. For simplicity,
the effective masses m are taken to be equal in both FM
and SC. The d-wave pair potential is a function of angle
θS between the quasiparticle wavevector and the interface
normal and given by ∆(x) = ∆d

± = ∆0 cos(2θS ∓ 2α) for
x > 0, where ∆d

+ (∆d
−) stands for the pair potential for

electron-like (hole-like) quasiparticles [13], ∆0 is a con-
stant, and α is the angle between the a-axis of the crystal
and the interface normal. α = π/4 for the interface normal
along the [110] orientation and α = 0 for the interface nor-
mal along [100] orientation. ∆(x) = 0 in the FM region for
x < 0. It is worth noting that the effective pair potentials
experienced by the electron-like and hole-like quasiparti-
cles in the d-wave SC are usually different and may even
have opposite signs under certain circumstances.

We adopt the BdG approach [38] to study the FM/d-
wave SC junction. This approach has been widely ap-
plied to describing quasiparticle states in superconductors
with spatially varying pair potential. In the FM/SC junc-
tion, the quasiparticle states are generally expressed by a
four-component wave function, respectively, for electron-
like quasiparticle (ELQ) and hole-like quasiparticle (HLQ)
with spin up and down. In the absence of spin-flip scat-
tering, the four-component BdG equations may be decou-
pled into two sets of two-component equations: one for the
spin-up electron-like and spin-down hole-like quasiparticle
wave function (u↑, v↓), the other for u↓ and v↑. The BdG
equation is given by

[
H0(r) − ησh(r) ∆(x, θ)

∆∗(x, θ) −H0(r) − ησh(r)

][
uσ(x, θ)

vσ̄(x, θ)

]
=

E

[
uσ(x, θ)

vσ̄(x, θ)

]
. (1)

Here H0(r) = −�
2∇2

r/2m + V (r) − EF with V (r) the
usual static potential, E is the quasiparticle energy rel-
ative to the Fermi energy EF . h(r) = h0Θ(−x) with h0

the exchange energy in FM and Θ(−x) the unit step func-
tion, ησ = 1 for σ =↑ and −1 for σ =↓, and σ̄ stands for
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Fig. 1. Schematic illustration of the reflection and transmis-
sion processes at the FM/d-wave SC interface.

the spin opposite to σ. Following McMillan’s method [37],
we employ two envelop functions that are smooth on
the atomic scale length, uσ(r) = ūσ(r) exp(ikσ

F · r) and
vσ̄(r) = v̄σ̄(r) exp(ikσ̄

F·r). By neglecting the terms as
∂2/∂x2 which are of order ∆0/EF with respect to the
∂/∂x term, we obtain the reduced BdG equations for the
quasiparticle wave functions

−i�2kσ
F

m
(k̂ · ∇)ūσ(r) + ∆̄∗(r)v̄σ̄(r) = Eūσ(r), (2)

i�2kσ̄
F

m
(k̂ · ∇)v̄σ̄(r) + ∆̄(r)ūσ(r) = Ev̄σ̄(r), (3)

where ∆̄(r) = ∆(r) exp [i(kσ
F − kσ̄

F) · r], kσ
F =

kF

√
1 + ησh0/EF is the spin-dependent Fermi wavevec-

tor in FM with kF the Fermi wavevector in SC, and k̂ is
a unit vector denoting the direction of wavevector k. At
the FM/SC interface there are four types of quasiparticle
injection process: electron and hole injection from FM
to SC, and ELQ and HLQ injection from SC to FM.
Suppose a beam of spin-σ electrons incident on the
interface at x = 0 at an angle θ from FM to SC. As shown
in Figure 1, there are four possible trajectories: normal
reflection (NR) bσ

1 at angle θ and Andreev reflection [24]
(AR) aσ̄

1 as a hole with spin-σ̄ at angle θA in FM, and
transmission cσ

1 and dσ̄
1 to SC at angle θS , respectively, as

a spin-σ ELQ and a spin-σ̄ HLQ.
It is worth pointing out that the AR coefficient aσ̄

1 is
labeled with σ̄ because the AR results in an electron defi-
ciency in the spin-σ̄ subband of the FM, even though it is
at times called a spin-σ hole. With general solutions of the
BdG equations, the wave functions in FM and SC regions
can be obtained. Owing to translational invariance in the
direction parallel to the interface, the wave functions in
FM and SC are given by

ΨFM
1σ =

(
1
0

)
eiqσ

e xcos θ + aσ̄
1

(
0
1

)
eiqσ̄

hxcos θA

+ bσ
1

(
1
0

)
e−iqσ

e xcos θ (4)

for x < 0, and

ΨSC
1σ = cσ

1

(
ud

+eiφd
+

vd
+

)
eikd

+xcos θS +dσ̄
1

(
vd
−eiφd

−

ud−

)
e−ikd

−xcos θS

(5)

for x > 0. Here qσ
e cos θ = kσ

F cos θ + mE/(�2kσ
F cos θ)

and qσ
h cos θA = kσ

F cos θA −mE/(�2kσ
F cos θA), indicating

different Fermi wavevector components perpendicular to
the interface for the spin-σ electrons and holes in FM. In

SC, kd
± cos θS = kF cos θS ±m

√
E2 − |∆d±|2/(�2kF cos θS)

and k̃d
± cos θS = kF cos θS ∓m

√
E2 − |∆d±|2/(�2kF cos θS)

with kF =
√

2mEF /�. In equation (5), (ud
±)2 =

1 − (vd
±)2 = (1 +

√
1 − |∆d±/E|2)/2, and φd

± =
cos−1[cos 2(θS∓α)/|cos 2(θS∓α)|]. In the BTK approach,
since the wave-vector component parallel to the interface
is assumed to remain unchanged in reflection and trans-
mission, i.e., kσ

F sin θ = kσ̄
F sin θA = kF sin θS , the angles

θ, θA and θS differ from each other except when θ = 0. For
example, for the incident electrons with spin up, we have
k↑

F > kF > k↓
F , so that θ < θS < θA. With increasing θ,

both θA and θS become large. As θ exceeds sin−1(k↓
F /k↑

F ),
the x component of the wavevector in the AR process,√

k↓
F

2 − k↑
F

2
sin2θ, will become purely imaginary and the

Andreev reflected quasiparticles do not propagate, which
is called the virtual AR.

As θ is further increased to be θ > sin−1(kF /k↑
F ), the

transmitted quasiparticles do not propagate and so the
net charge current from FM to SC vanishes. All the co-
efficients aσ̄

1 , bσ
1 , cσ

1 and dσ̄
1 can be determined by match-

ing the boundary conditions at x = 0: ΨFM
1σ (0) = ΨSC

1σ (0)
and (dΨSC

1 /dx)x=0−(dΨFM
1 /dx)x=0 = 2kF cos θZΨFM

1 (0)
where Z = mU/kF cos θ represents the strength of the in-
terfacial barrier. The wave functions for the other three
types of quasiparticle injection processes can be obtained
in a similar way.

The next step is to construct the Nambu spinor
Green’s function in the FM/d-wave SC structure. With
the wave functions Ψiσ(i = 1, 2, 3, 4 and σ =↑, ↓), the re-
tarded Green’s function [9,16,39,40] is given by

Gσ
r (x, x′, E) =




ασ
1Ψ3σ(x)Ψ t

1σ(x′) + ασ
2Ψ3σ(x)Ψ t

2σ(x′)

+ασ
3Ψ4σ(x)Ψ t

1σ(x′) + ασ
4Ψ4σ(x)Ψ t

2σ(x′),

x ≤ x′

βσ
1 Ψ1σ(x)Ψ t

3σ(x′) + βσ
2 Ψ1σ(x)Ψ t

4σ(x′)

+βσ
3 Ψ2σ(x)Ψ t

3σ(x′) + βσ
4 Ψ2σ(x)Ψ t

4σ(x′),

x ≥ x′

(6)
where the wave function Ψ t

iσ(x) is the transposition
of Ψiσ(x). The coefficients ασ

i and βσ
i (i = 1, 2, 3, 4),

can be determined by satisfying the following boundary
conditions: Gσ

r (x, x + 0+, E) = Gσ
r (x, x − 0+, E), and

dGσ
r (x, x′, E)/dx|x=x′+0+ − dGσ

r (x, x′, E)/dx|x=x′−0+ =
(2m/�

2)τ̂3 with τ̂3 the Pauli matrix. After carrying out a
little tedious calculation, we get diagonal and off-diagonal
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components of the 2×2 retarded Green’s functions as

[Gσ
r (x, x, θ, E)]11 = − im

�2qσ
e cos θ

(
1 + bσ

1 e−2iqσ
e x cos θ

)
,

(7)

[Gσ
r (x, x, θ, E)]12 = − im

�2qσ̄
h cos θA

aσ
2ei(qσ̄

h cos θA−qσ
e cos θ)x,

(8)

in FM, and

[Gσ
r (x, x, θS , E)]11 = − imE

�2kd
+Ω+cos θS

×
[
ei(kd

+−k̃d
−)x cos θSud

+ud
−ei(φd

++φd
−) + bσ

3e2ikd
+x cos θS

(
ud

+

)2
+aσ̄

3ei(kd
+−kd

−)x cos θSud
+vd

−ei(φd
++φd

−)
]
− imE

�2kd−Ω−cos θS

×
[
ei(k̃d

+−kd
−)x cos θS vd

+vd
−ei(φd

++φd
−)+ bσ

4e−2ikd
−x cos θS

(
vd
−
)2

+aσ̄
4ei(kd

+−kd
−)x cos θSud

+vd
−ei(φd

++φd
−)
]
, (9)

[Gσ
r (x, x, θS , E)]12 = − imE

�2kd
+Ω+cos θS

×
[
ei(kd

+−k̃d
−)x cos θS ud

−vd
+eiφd

− + bσ
3 e2ikd

+x cos θS ud
+vd

+eiφd
+

+aσ̄
3ei(kd

+−kd
−)x cos θS vd

+vd
−eiφd

−
]
− imE

�2kd−Ω−cos θS

×
[
ei(k̃d

+−kd
−)x cos θS ud

−vd
+eiφd

+ + bσ
4e−2ikd

−x cos θS ud
−vd

−eiφd
−

+aσ̄
4ei(kd

+−kd
−)x cos θSud

+ud
−eiφd

+

]
, (10)

in SC. Here Ω± =
√

E2 − |∆d±|2, and the expressions for
the reflection and transmission coefficients are given in the
Appendix.

From the Green’s function obtained above, the local
DOS of the quasiparticles, N(x, E), and the supercon-
ducting order parameter, F (x, θ), can be calculated [40].
The local DOS of the quasiparticles is proportional to the
imaginary part of the [Gσ

r (x, x, θ, E)]11,

N(x, E) =
−1
π

∑
σ,k‖

Im[Gσ
r (x, x, θ, E)]11, (11)

where k‖ = k sin θ is the parallel component of the mo-
mentum and the summation over k‖ may be performed
by the integral over θ. The superconducting order param-
eter F (x) is determined by the off-diagonal component of
the Green’s function, [Gσ

r (x, x, θ, E)]12. In the s-wave case,
the pair potential can be recalculated by ∆(x) = λ∗F (x)
where λ∗ is the effective electron-phonon coupling con-
stant [37]. In the d-wave case, the attractive interaction
V (k−k′) is proportional to cos(2θ−2α) cos(2θ′−2α) [41],
so that we have

∆(x, θ) = λ∗F (x) cos(2θ − 2α), (12)

with

F (x) =
1
π

∑
σ,k′

‖

cos(2θ′ − 2α)
∫ ∞

0

dE Im[Gσ
r (x, x, θ′, E)]12.

(13)
If the c-axis of the d-wave SC is parallel to the interface
normal (along the x-direction), the FM/d-wave SC junc-
tion needs to be considered as a three-dimensional (3D)
system, in which ∆0(x, φ) = ∆0 cos(2φ) for x > 0 at the
beginning and ∆(x, φ) = ∆(x) cos(2φ) where φ is the an-
gle between the a-axis of the crystal and the z direction.
In this case, all the calculations can be performed in a
similar way provided that all the wavevectors are taken to
be 3D, and the summation in equations (11) and (13) are
replaced by the integrals over θ and φ.

3 Results and discussions

In what follows we present and discuss numerical re-
sults from equations (11) and (13) together with equa-
tions (7–10). In Figure 2 we plot spatial variation of the
amplitude of superconducting order parameters in the
FM/d-wave SC structure for α = 0 (solid line), α = π/4
(dotted line), and the c-axis along the x-direction (dash-
dotted line). On the FM side, there appears an oscil-
lating superconducting order parameter induced by the
proximity effect. As Cooper pairs are injected from SC
to FM, the spin-σ ELQ and spin-σ̄ HLQ interfere with
each other, producing a damped oscillation of F (x). Here
ξF = �vF /2h0 is the coherent length in FM, it is inversely
proportional to the difference in the Fermi momentum
between the spin-σ electron and spin-σ̄ hole. Similar to
the case of FM/s-wave SC junctions, the state with pos-
itive F (x) is called the “0” state and that with negative
F (x) called the “π” state. They appear alternately with
increasing distance from the FM/SC interface. On the SC
side, the order parameter is diminished near the interface,
which arises from the pair-breaking effect due to the in-
jection of spin-polarized electrons from FM to SC. Here
ξS = �vF /2∆0 is the coherent length in SC, much longer
than ξF . The proximity effect depends not only on the
barrier strength, but also on the angle between the crys-
tal axis and the interface normal, as shown in Figure 2. It
is easily understood that the stronger the barrier strength,
the weaker the proximity effect is.

The anisotropy dependence of the proximity effect is
an interesting result. For the a-axis of SC crystal perpen-
dicular to the interface (α = 0), there is only a small
decrease in F (x), which is somewhat similar to the case of
s-wave SC. For α = π/4, however, F (x) has a big decrease
near the interface, even in the presence of large Z. This
may stem from the fact that for α = π/4, ∆ = ∆0 sin 2θ
is an odd function of θ; while for α = 0, ∆ = ∆0 cos 2θ
is an even function of θ. The injection of spin-polarized
electrons has a stronger pair-breaking effect on the for-
mer with a largest asymmetry with respect to the x-axis,
along which a node appears in the order parameter of the
bulk SC. Another difference in F (x) between α = 0 and
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Fig. 2. Spatial change of the superconducting order parameter
in FM/d-wave SC junctions for Z = 0.3 (a) and Z = 2.5 (b)
with α = 0 (solid line), α = π/4 (dotted line), and the c-
axis of the crystal along the x-direction (dot-dashed line). Here
h0/EF = 0.05 is taken.

α = π/4 is the oscillation periods of F (x) in FM. The
oscillation period for α = 0 is close to 2πξF , while that
for α = π/4 is significantly shorter. This difference may
be understood by the following argument. As shown in
equations (8) and (13), the oscillation period L of F (x)
in FM is determined by (qe↑ cos θ − qh↓ cos θA)L = 2π as
well as the integral over θ. For α = 0, the normal injec-
tion (θ = θA = 0) dominates the integral over θ and so
L = 2π/(qe↑ − qh↓) = 2πξF , the same as that in the s-
wave SC case [19]. For α = π/4, the normal injection of
θ = 0 that comes from the node of F (x) is of not impor-
tance, and what plays a dominant role in F (x) in FM is
the injection for θ below but close to ±π/4. It is easily
shown that the absolute value of qe↑ cos θ − qh↓ cos θA is
always greater than that for θ = θA = 0 provided that the
condition qe↑ sin θ = qh↓ sin θA is taken into account. As

Fig. 3. (a) Local DOS in SC at x/ξS = 0.1, 0.5, 1.0, and
2.0. (b) local DOS with spin up and down (dashed and dotted
lines) and total (solid line) in SC at x/ξS = 0.1. Here α = π/4,
h0/EF = 0.05, and Z = 2.5.

a result, the period for α = π/4 is shorter than that for
α = 0. For the c-axis of the crystal along the x-direction,
the period is also given by L = 2πξF , the same as that in
α = 0 for the reason given above. In this case, the prox-
imity effect is stronger than that for α = 0 but weaker
than for α = π/4, corresponding seemingly to an average
result.

Figure 3a shows the normalized local-DOS N(x, E) of
quasiparticles in SC for α = π/4. We see that the DOS
has a sharp peak at E = 0; with increasing distance from
the interface, the zero-energy peak is gradually lowered
and becomes narrow, and the shape of N(x, E) tends to-
ward that of the bulk d-wave SC, with ξS = �vF /2∆0 the
coherence length in SC. More interestingly, the DOS in
SC is found to be spin dependent, as shown in Figure 3b.
From different DOS for spin-up and spin-down quasiparti-
cles, it follows that a weak ferromagnetism appears in SC
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Fig. 4. Local DOS in SC at x/ξS = 0.1 for Z = 2.5 (solid
line), 0.3 (dashed line), and 0 (dotted line). Here α = 0 and
h0/EF = 0.05.

near the interface, which arises from the injection of spin-
polarized electrons from FM to SC. There is a coexistence
of superconductivity and ferromagnetism in the local re-
gion near the FM/SC interface. This result is consistent
with that obtained in a recent work [42]. In Figure 4 we
plot N(x = 0.1ξS, E) in SC for α = 0 with different Z. For
large Z the proximity effect is weak and the local DOS is
close to that in the bulk d-wave SC for α = 0. With de-
creasing Z, the enhanced proximity effect causes the DOS
at E = 0 to increase and its peak at E = ∆0 to lower. Dif-
ferent DOS shapes in SC for α = π/4 and 0, respectively,
as shown in Figures 3a and 4, stem from the anisotropy of
the superconducting order parameter in the d-wave SC.

Figure 5 shows the normalized DOS in FM versus en-
ergy E/∆0 for α = π/4 with different Z. It is found that
there are two types of SC-induced DOS with different
shapes, superimposed on the DOS background in FM. For
example, at x = −0.5ξF the DOS displays a sharp peak
at E = 0, as shown in Figures 5a and 5c, while at x =
−0.75ξF , there is an inversion in shape of the SC-induced
DOS, as shown in Figures 5b and 5d. Both of them arise
from the interference effect of the spin-σ electrons and the
Andreev reflected holes with spin-σ̄. It is expected that
these two types of DOS in FM would be observed in fu-
ture experiments, e.g., a tunneling spectrum measurement
on a normal-metal/I/La1−xSrxMnO3/YBa2Cu3O7 struc-
ture where I stands for a thin insulating layer. Such an
SC-induced DOS will disappear gradually with distance
from the interface.

4 Summary

We have applied the Nambu spinor Green’s function ap-
proach and BTK theory to study the proximity effect in
FM/d-wave SC junctions. It is found that, unlike in the
s-wave case, the magnitude of the proximity effect for the
d-wave SC depends to a great extent on the orientation

of the crystal with respect to the interface normal, being
strongest for α = π/4 and weakest for α = 0. On the FM
side, the superconducting order parameter induced by the
proximity effect has a change from “0 state” to “π state”
as the distance from the interface increases. The injection
of the Cooper pairs from the d-wave SC leads to two types
of different DOS shapes with d-wave superconducting fea-
tures. On the SC side, the injection of spin-polarized elec-
trons from FM induces the spin dependence of DOS near
the interface and so the local coexistence of weak ferro-
magnetism and d-wave superconductivity.

This work was supported by National Natural Science Foun-
dation of China under Grant No. 10174011 and 10374046, and
also by the Jiangsu Province Natural Science Foundation of
China under Grant No. BK2001002.

Appendix A: Expressions for reflection
and transmission coefficients in Green’s
functions

Using the boundary conditions on the wave functions and
carrying out a little tedious algebra, we find

aσ̄
1 = 2qσ

e cos θ(kd
+ cos θS + kd

− cos θS)ud
−vd

+/A,

bσ
1 = [(qσ

e cos θ − kd
+ cos θS − 2ikF cos θZ)

× (kd
− cos θS + qσ̄

h cos θA − 2ikF cos θZ)ud
+ud

−eiφd
+

+ (kd
+ cos θS − qσ̄

h cos θA + 2ikF cos θZ)

× (kd
− cos θS + qσ

e cos θ − 2ikF cos θZ)vd
+vd

−eiφd
− ]/A,

aσ
2 = 2qσ̄

h cos θA(kd
+ cos θS + kd

− cos θS)ud
+vd

−ei(φd
++φd

−)/A,

bσ̄
2 = [(qσ̄

h cos θA − kd
− cos θS + 2ikF cos θZ)

× (kd
+ cos θS + qσ

e cos θ + 2ikF cos θZ)ud
+ud

−eiφd
+

+ (kd
− cos θS − qσ

e cos θ − 2ikF cos θZ)

× (kd
+ cos θS + qσ̄

h cos θA + 2ikF cos θZ)vd
+vd

−eiφd
− ]/A,

aσ̄
3 = [(qσ

e cos θ − k̃d− cos θS − 2ikF cos θZ)

× (kd
+ cos θS − qσ̄

h cos θA − 2ikF cos θZ)ud
−vd

+eiφd
−

+ (qσ̄
h cos θA + k̃d− cos θS + 2ikF cos θZ)

× (kd
+ cos θS + qσ

e cos θ − 2ikF cos θZ)ud
+vd

−eiφd
+ ]/B,

bσ
3 = [(kd

− cos θS − qσ
e cos θ + 2ikF cos θZ)

× (qσ̄
h cos θA + k̃d− cos θS + 2ikF cos θZ)(vd

−)2eiφd
−

+ (qσ̄
h cos θA + kd

− cos θS + 2ikF cos θZ)

× (qσ
e cos θ − k̃d− cos θS − 2ikF cos θZ)(ud

−)2eiφd
− ]/B,
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Fig. 5. Local DOS in FM at x/ξF = −0.5 and −0.75 for different Z = 0.3 (a, b) and 2.5 (c, d).

aσ
4 = [(k̃d

+ cos θS + qσ
e cos θ − 2ikF cos θZ)

× (kd
− cos θS + qσ̄

h cos θA + 2ikF cos θZ)ud
−vd

+eiφd
+

− (k̃d
+ cos θS − qσ̄

h cos θA − 2ikF cos θZ)

× (kd
− cos θS − qσ

e cos θ + 2ikF cos θZ)ud
+vd

−eiφd
− ]/B,

and

bσ̄
4 = [(qσ̄

h cos θA − k̃d
+ cos θS + 2ikF cos θZ)

× (kd
+ cos θS + qσ

e cos θ − 2ikF cos θZ)(ud
+)2eiφd

+

+ (k̃d
+ cos θS + qσ

e cos θ − 2ikF cos θZ)

× (kd
+ cos θS − qσ̄

h cos θA − 2ikF cos θZ)(vd
+)2eiφd

+ ]/B,

with

A = (qσ
e cos θ + kd

+ cos θS + 2ikF cos θZ)

× (kd
− cos θS + qσ̄

h cos θA − 2ikF cos θZ)ud
+ud

−eiφd
+

+ (qσ̄
h cos θA − kd

+ cos θS − 2ikF cos θZ)

× (kd
− cos θS − qσ

e cos θ − 2ikF cos θZ)vd
+vd

−eiφd
− ,

and

B = (kd
− cos θS − qσ

e cos θ + 2ikF cos θZ)

× (kd
+ cos θS − qσ̄

h cos θA − 2ikF cos θZ)vd
+vd

−eiφd
−

− (qσ̄
h cos θA + kd

− cos θS + 2ikF cos θZ)

× (kd
+ cos θS + qσ

e cos θ − 2ikF cos θZ)ud
+ud

−eiφd
+ .
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17. I. Baladié, A. Buzdin, Phys. Rev. B 64, 224514 (2001)
18. K. Halterman, O.T. Valls, Phys. Rev. B 65, 14509 (2001)



384 The European Physical Journal B

19. G.Y. Sun, D.Y. Xing, J.M. Dong, M. Liu, Phys. Rev. B
65, 174508 (2002); G.Y. Sun, D.Y. Xing, R. Shen, H.Q.
Lin, Eur. Phys. J. B 30, 33 (2002)

20. K. Halterman, O.T. Valls, Phys. Rev. B 66, 224516 (2002)
21. A. Kohen, G. Leibovitch, G. Deutscher, Phys. Rev. Lett.

90, 207005 (2003)
22. A. Bagrets, C. Lacroix, A. Vedyayev, Phys. Rev. B 68,

54532 (2003).
23. O. Bourgeois, A. Frydman, R.C. Dynes, Phys. Rev. B 68,

92509 (2003)
24. A.F. Andreev, Phys. JEPT 19, 128 (1964)
25. C.R. Hu, Phys. Rev. Lett. 72, 1526 (1994)
26. N. Stefanakis, R. Melin, J. Phys.: Condens. Matter 15,

3401 (2003)
27. A.A. Abrikosov, Fundamentals of the Theory of Metals

(North-Holland, Amstergam, 1988)
28. K. Yang, S.L. Sondhi, Phys. Rev. B 57, 8566 (1998)
29. P. Fulde, A. Ferrel, Phys. Rev. 135, A550 (1964)
30. A. Larkin, Y. Ovchinnikov, Sov. Phys. JETP 20, 762

(1965)
31. N.I. Karchev, K.B. Blagoev, K.S. Bedell, P.B. Littlewood,

Phys. Rev. Lett. 86, 846 (2001)

32. R. Shen, Z.M. Zheng, S. Liu, D.Y. Xing, Phys. Rev. B 67,
24514 (2003)

33. M. Cuoco, P. Gentile, C. Noce, Phys. Rev. Lett. 91, 197003
(2003)

34. B.R. Zhao, X.L. Dong, P.S. Luo, Z.X. Zhao, L.M. Peng,
Y.M. Ni, X.G. Qiu, S. Awaaji, K. Watanabe, F. Wu, B.
Xu, L.H. Zhao, F.C. Zhang, Eur. Phys. J. B 25, 19 (2002)

35. G. Jakob, V.V. Moshchalkov, Y. Bruynseraede, Appl.
Phys. Lett. 66, 2564 (1995)

36. G.E. Blonder, M. Tinkham, T.M. Klapwijk, Phys. Rev. B
25, 4515 (1982)

37. W.L. McMillan, Phys. Rev. 175, 559 (1968)
38. P.G. de Gennes, superconductivity of Metals and Alloys

(Benjamin, New York, 1966)
39. Y. Nambu, Phys. Rev. 117, 648 (1960)
40. A. Furusaki, H. Takayanagi, M.Tsukada, Phys. Rev. B 45,

10563 (1992)
41. M. Liu, D.Y. Xing, Z.D. Wang, Phys. Rev. B 55, 3181

(1997)
42. F.S. Bergeret, A.F. Volkov, K.B. Efetov,

arXiv:cond-mat/0307468


